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Abstract.14

Background: The population aging increased the prevalence of brain diseases, like Alzheimer’s disease (AD), and early
identification of individuals with higher odds of cognitive decline is essential to maintain quality of life. Imaging evaluation
of individuals at risk of cognitive decline includes biomarkers extracted from brain positron emission tomography (PET) and
structural magnetic resonance imaging (MRI).
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Objective: We propose investigating ensemble models to classify groups in the aging cognitive decline spectrum by combining
features extracted from single imaging modalities and combinations of imaging modalities (FDG+AMY+MRI, and a PET
ensemble).
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Methods: We group imaging data of 131 individuals into four classes related to the individuals’ cognitive assessment in
baseline and follow-up: stable cognitive non-impaired; individuals converting to mild cognitive impairment (MCI) syndrome;
stable MCI; and Alzheimer’s clinical syndrome. We assess the performance of four algorithms using leave-one-out cross-
validation: decision tree classifier, random forest (RF), light gradient boosting machine (LGBM), and categorical boosting
(CAT). The performance analysis of models is evaluated using balanced accuracy before and after using Shapley Additive
exPlanations with recursive feature elimination (SHAP-RFECV) method.
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Results: Our results show that feature selection with CAT or RF algorithms have the best overall performance in discriminating
early cognitive decline spectrum mainly using MRI imaging features.
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Conclusion: Use of CAT or RF algorithms with SHAP-RFECV shows good discrimination of early stages of aging cognitive
decline, mainly using MRI image features. Further work is required to analyze the impact of selected brain regions and their
correlation with cognitive decline spectrum.
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INTRODUCTION34

Aging is a complex process that evolves deleterious35

changes in molecular and morphological levels lead-36

ing to cognitive decline and increased risk of diseases37

and death. The population aging increases the preva-38

lence of age-related brain diseases and syndromes,39

like dementia [1]. The main cause of dementia in the40

elderly population worldwide is Alzheimer’s disease41

(AD), a multifactorial progressive and irreversible42

neurodegenerative disease [2].43

AD was first defined as a clinical-pathologic entity44

based on clinical history, neurological examinations,45

cognitive testing, and neuroimaging [3], with defini-46

tive diagnosis by autopsy [4]. In 2011, the National47

Institute on Aging and Alzheimer’s Association cre-48

ated separate diagnostic recommendations for the49

preclinical, mild cognitive impairment (MCI), and50

dementia stages of AD. The definition of AD in51

living people is biologically identified by an ensem-52

ble of neuropathological changes, like amyloid-�53

(A�) and tau in abnormal levels, determined by in54

vivo biomarkers and postmortem evaluation with-55

out considering the clinical symptoms in a research56

framework. In clinical practice, clinical symptoms are57

still the main diagnosis of dementia. However, in the58

absence of clear threshold values to define abnormal59

levels of A� and tau, clinical-pathological evaluation60

is still used, dividing the cognitive continuum into61

three traditional categories, healthy cognitive non-62

impaired individuals (CNI), MCI, and dementia, with63

dementia further subdivided into mild, moderate, and64

severe stages [4]. Neuropathological AD changes65

begin several decades before cognitive impairment.66

Drugs can temporarily relieve symptoms but do not67

stop or slow down the pathological damage, leading68

to the idea that preventive and treatments may be more69

effective in the early phases [1, 5].70

Several neuroimaging modalities have been used71

to investigate, diagnose, and predict early dementia.72

Magnetic resonance imaging (MRI) identifies neu-73

ronal/synapse loss and atrophy. Positron emission74

tomography (PET) using 18F-fluorodeoxyglucose75

(FDG PET) enables glucose metabolism assessment,76

and amyloid-� tracers quantify protein burden (AMY77

PET). The combination of neuroimaging and artifi-78

cial intelligence techniques, like machine learning79

(ML), has been increasing in the last years, aim-80

ing to predict dementia development and classify81

individuals based on image features and neuropsy-82

chological test scores. The neuroimaging technique83

more present in the literature associated with ML84

methods is the MRI, followed by PET images, achiev- 85

ing mean classification accuracies of 74.5%, for MRI 86

alone, 76.9% for PET images, and 77.5% when 87

combined both modalities [6]. Despite recent devel- 88

opments in classification and prediction models in 89

cognitive decline progression using image features, 90

current literature focuses on comparing CNI versus 91

MCI, MCI versus AD, and CNI versus AD [2, 7–15]. 92

Investigating early conversion using image features 93

is still challenging and requires further investigation. 94

In this study, we propose to investigate tree- 95

based ensemble models to classify individuals in 96

the cognitive decline spectrum by using features 97

extracted from single imaging modalities (FDG PET, 98

AMY PET, and MRI) and combinations of imag- 99

ing modalities (FDG PET+AMY PET+MRI, and a 100

PET ensemble) to verify which combination of fea- 101

tures and algorithm performs better. We evaluate the 102

performance of four algorithms before and after fea- 103

ture selection using Shapley Additive Explanations 104

with recursive feature evaluation and cross-validation 105

(SHAP-RFECV) to classify four groups: stable CNI, 106

healthy individuals who just ended up with MCI 107

referred to as converters (CONV), stable MCI, and 108

those with Alzheimer’s clinical syndrome (ACS). 109

Our results showed that combining SHAP-RFECV 110

with the categorical boosting, and the random forest 111

algorithms showed good performance discriminat- 112

ing early cognitive decline. Features extracted from 113

MRI achieve higher accuracy in the discrimination of 114

CNI from all other groups. The classification using 115

the multimodal combination of all images achieves 116

higher accuracies than the PET ensemble. 117

MATERIALS AND METHODS 118

Image dataset 119

We use FDG PET, AMY PET (acquired with 120

11C-PiB or 18F-AV45), and structural T1-weighted 121

MRI retrieved from the Alzheimer’s Disease Neu- 122

roimaging Initiative (ADNI, http://adni.loni.usc.edu) 123

database to train and evaluate our models. ADNI 124

was launched in 2003 as a public-private part- 125

nership led by Principal Investigator Michael W. 126

Weiner, MD. Inclusion and exclusion ADNI crite- 127

ria can be found in their general procedure manual 128

(http://adni.loni.usc.edu/methods/documents/). FDG 129

PET and MRI were acquired on the same day, while 130

AMY PET was acquired on different days or visits. 131

PET and MRI acquisition protocols can be found on 132

the ADNI website. 133
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For our study, data from individuals are grouped134

into four classes (CNI, CONV, MCI, and ACS)135

related to their cognitive assessment in the baseline136

and follow-up, using the criteria described in the fol-137

lowing paragraphs.138

CNI individuals have no memory complaints, nor-139

mal memory function documented by scoring at140

specific cutoffs described in ADNI protocol. In addi-141

tion, our sample remains cognitively healthy for more142

than 5 years in the follow-up.143

CONV individuals are characterized as CNI in the144

baseline, converting to MCI in the follow-up years,145

based on their cognitive scores according to ADNI146

protocol. Image inclusion criteria include images that147

were acquired between six months before conversion148

to MCI and one year after conversion to avoid fluctu-149

ations with subjects that are stable in their diagnosis150

as CNI or MCI.151

MCI are patients with memory complaints and152

abnormal memory function documented by scoring153

below the adjusted education cutoff described in the154

ADNI protocol. Our MCI individuals are stable for155

at least 5 years follow-up.156

ADNI protocol classified ACS individuals157

as “probable AD” because they have memory158

complaints, abnormal memory function, and159

NINCDS/ADRDA (National Institute of Neurolog-160

ical and Communicative Diseases and Stroke/161

Alzheimer Disease and Related Disorders162

Association) criteria for probable AD.163

All stable individuals (CNI, MCI, and ACS) were164

randomly chosen in the ADNI dataset if they attended165

the inclusion criteria of at least 5 years of stability in166

their diagnosis.167

Table 1 shows the number of individuals in our168

sample, with all three imaging modalities (FDG PET,169

AMY PET, and MRI) and those with only FDG PET170

and MRI and demographic information.171

MRI was acquired on the same day as FDG172

PET images. MRI acquired on the same day of173

AMY PET images was used for processing purposes174

but was not included in the analysis. Individuals175

with images of three modalities were the same176

as those included in the only FDG PET and MR 177

images. 178

We checked each PET to assure scattering 179

and attenuation correction. We selected only MRI 180

acquired on the same day or the nearest date to PET. 181

Image quality was visually inspected after download. 182

Images with poor quality, missing brain parts (usu- 183

ally the cerebellum), and non-standardized PET time 184

frames (for FDG PET 6 frames or 30 min, and AMY 185

PET 4 frames or 20 min) were excluded. 186

There is a statistically significant difference 187

between age, demonstrated by one-way ANOVA (for 188

FDG PET/MRI F = 17.451, p < 0.05; for AMY PET 189

F = 13.049; p < 0.05). Tukey’s post hoc test showed 190

that CNI and CONV are statistically older than MCI 191

and ACS (p < 0.05) in FDG/MRI. There is no signif- 192

icant difference between CNI and CONV (p > 0.05). 193

There is a slight gender difference, with χ2 = 7.711, 194

p = 0.052, for FDG PET/MRI, primarily due to the 195

small number of females in the CONV group. For 196

AMY PET, the χ2 test does not show a significant 197

statistical difference between gender in CNI, CONV, 198

MCI, and ACS (χ2 = 6.609, p = 0.085). 199

According to the one-way ANOVA, there was no 200

statistically significant difference between groups in 201

years of education (for FDG PET/MRI F = 0.385, 202

p = 0.764; for AMY PET F = 1.958; p = 0.125). 203

Image preprocessing 204

We processed all images in a pipeline using 205

PMOD® (https://www.pmod.com/web/) version 206

4.0 and SPM12 (https://www.fil.ion.ucl.ac.uk/spm/ 207

software/spm12/) software. Pixel interpolation (1 208

mm³) is applied in all images before processing 209

to harmonize the data extracted from different 210

matrix sizes. A flowchart overview of the applied 211

methodology used in this work is presented in 212

Supplementary Figure 1. 213

PET processing 214

Initially, motion correction is applied using nor- 215

malized mutual information in PMOD®, with the 216

Table 1
Demographics

Sample size Age (y) Gender (M/F) Education (y)
Group/ All FDG FDG AMY FDG AMY FDG AMY
Modality modalities PET/MRI PET/MRI PET PET/MRI PET PET/MRI PET

CNI 22 36 79.6 ± 5.5 80.5 ± 4.4 18/18 11/11 16.0 ± 3.6 17.3 ± 2.6
CONV 16 24 81.7 ± 4.4 81.8 ± 4.9 19/5 13/3 16.4 ± 3.2 16.1 ± 3.4
MCI 40 40 71.6 ± 6.8 71.8 ± 7.1 19/21 19/21 16.1 ± 2.5 16.1 ± 2.5
ACS 29 31 73.3 ± 8.3 75.6 ± 7.9 20/11 19/10 15.54 ± 2.79 15.4 ± 2.7
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first frame (5 min) as reference. Then, the average217

PET image is calculated in the last 15 min for FDG218

PET and the last 20 min for AMY PET.219

In SPM12, the image origin is manually positioned220

in the anterior commissure-posterior commissure221

brain line. PET and MRI co-registration is made with222

trilinear interpolation. Individual MRI segmentation223

of white matter (WM), gray matter (GM), and cere-224

brospinal fluid (CSF) are realized in the MNI space.225

Subsequently, PET is normalized to the MNI space.226

Finally, a whole-brain mask based on WM, GM, and227

CSF MRI segmentation is applied to the PET image228

smoothed with a gaussian filter of 8 mm kernel. In the229

end, all PET images have 91 x 109 x 91 pixels, with230

a 2 mm isotropic voxel size.231

MRI processing232

MRI is processed using the Computational233

Anatomy Toolbox (CAT, http://www.neuro.uni-234

jena.de/cat/) for volume estimation in the GM brain235

regions after cropping to remove extra tissues, as the236

neck and shoulders. Images are initially denoised237

with a spatial adaptive non-local means denoising238

filter, bias-corrected, affine-registered to template239

space, and segmented in GM, WM, and CSF.240

Then, a skull-stripping is realized, and brain par-241

cellation in right and left hemispheres, subcortical242

areas, and the cerebellum. Subsequently, a local243

intensity transformation of all tissue classes and244

adaptive maximum a posteriori (AMAP) segmenta-245

tion is performed. Finally, the AMAP segmentation246

is refined by applying partial volume correction,247

and tissues are spatially normalized to a com-248

mon reference space using DARTEL (Diffeomorphic249

Anatomical Registration Through Exponentiated250

Lie Algebra). Further details can be found in251

the CAT12 toolbox Manual (http://www.neuro.uni-252

jena.de/cat12/CAT12-Manual.pdf). In the end, all253

MR images have 91 x 109 x 91 pixels, with a 2.0 mm254

isotropic voxel size, and are smoothed with a gaussian255

filter of 6.0 mm kernel.256

Classification algorithms257

We evaluate the performance of four classification258

models using scikit-learn [16], LightGBM [17], and259

CatBoost [18] libraries, with Python version 3.6.5.260

The classifier algorithms are ensemble and tree-based261

and have an increased level of complexity, described262

in the following sub-sections. These algorithms were263

chosen based on the applicability of SHapley Addi-264

tive exPlanations with recursive feature elimination265

(SHAP-RFECV, described on section “Feature Selec- 266

tion”) method, which allows interpretability of the 267

selected features, and because they are powerful tools 268

that have been used to provide easy-to-interpret pre- 269

dictive results based on decisions trees. 270

Decision tree classifier 271

A decision tree classifier (DTC) is a non- 272

parametric supervised learning method that produces 273

a classification model by splitting data using simple 274

decisional rules. It is extensively applied in many pat- 275

tern recognition problems such as remotely sensed 276

multisource data classification, medical diagnosis, 277

speech, and character recognition. Some issues are 278

created using DTC, as pointed out by Safavian and 279

Landgrebe [19]. However, a truly optimal solution 280

concerning the choice of the decision tree structure, 281

feature subsets, and decision rule strategies is yet far 282

from realization [19, 20]. Our study uses the clas- 283

sification implemented in scikit-learn (https://scikit- 284

learn.org/stable/modules/tree.html#tree) with the 285

best split strategy, optimizing the criterion for infor- 286

mation gain between Gini impurity and entropy and 287

the maximum number of features for the best split. 288

Random forest 289

Random forest (RF) is a classifier that aims to avoid 290

overfitting mainly by adding two sources of random- 291

ness in the training stage. The first source is that each 292

tree in the forest is made from a sample of the original 293

training data. The second one is that when splitting a 294

tree node, the algorithm uses only a random subset of 295

all the features. After training all the trees, the model 296

chose the prediction based on the most selected fea- 297

tures or average prediction probabilities [21]. We use 298

the scikit-learn implementation of RF, using the aver- 299

age prediction probabilities approach. We maintain 300

the maximum number of features to consider when 301

seeking for best split set as automatic. The parameters 302

used for RF optimization are the number of estima- 303

tors, the criterion (Gini impurity or entropy), the need 304

for bootstrap, and where to use out-of-bag samples to 305

estimate the generalization score. 306

Light gradient boosting machine 307

Light gradient boosting machine (LGBM) is an 308

ensemble model of decision trees aiming to reduce 309

the complexity of histogram building by reducing 310

the data. Two main techniques are used and have 311

more efficiency and less memory usage. The first one 312

is the gradient-based one side sampling technique, 313

which uses only the instances with the most signifi- 314
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cant gradients to maximize the information gain and315

randomly drop the instances with small gradients.316

Thus, the technique reduces the dimensionality in317

the dataset and then reduces the training and pre-318

diction time. The second technique uses exclusive319

feature bundling to reduce the problem’s dimension-320

ality using graphs and solve the problem with a321

constant approximation ratio [17]. Our study uses the322

gradient boosting decision tree and binary learning323

task with the following hyperparameters: the number324

of estimators, the number of leaves, minimum child325

weight, and samples.326

Categorical boosting327

Categorical boosting (CAT), also known as Cat-328

Boost, is a gradient boosting algorithm that handles329

categorical features during the training phase, dif-330

ferent from others that need to be addressed during331

the preprocessing step. Although CAT is designed332

mainly to deal with categorical features, it is possible333

to run over a dataset with continuous features. The334

primary motivation of CAT is to avoid the prediction335

shift of traditional gradient boosting models. Instead,336

it uses ordered boosting, which creates a given num-337

ber of sub-datasets based on the permutation of the338

original data to train the model. CAT also differs in the339

use of oblivion trees with a more robust regulariza-340

tion due to the restriction in the building processes341

and better computational performance due to limi-342

tations in the feature’s splits per tree level [18]. In343

our study, we used the CAT as an ordered gradient344

boosting on decisions trees with loss function, learn-345

ing rate, bagging aggressivity for Bayesian bootstrap,346

the coefficient at the L2 regularization term of the cost347

function, depth of the tree, overfitting detector type,348

and threshold as parameters for model tunning.349

Feature extraction350

Imaging features are vectorized, with rows rep-351

resenting the individuals, and columns the imaging352

features extracted from the following brain regions:353

amygdala, brainstem, caudate nucleus, cerebellum,354

cingulate gyri, corpus callosum, frontal lobe, hip-355

pocampus, insula, nucleus accumbens, occipital lobe,356

occipital lobe cuneus, pallidum, parietal lobe, puta-357

men, temporal lobe, thalamus, and ventricles.358

PET imaging features are composed of the mean359

uptake of the previous brain regions normalized360

by the ratio between each voxel and the whole-361

brain mean uptake, extracted from Hammers N30R83362

atlas [22] overlapped in PET using an in-house363

MATLAB code to produce a brain region-based 364

analysis. The normalization avoids the variability 365

of PET images acquired in different institutions or 366

equipment. 367

MR imaging features are the volumes of the previ- 368

ous brain regions normalized by the total intracranial 369

volume using the Hammers N20R67 atlas [6]. 370

Feature selection 371

We use Shapley additive explanations (SHAP) 372

combined with the recursive feature elimination with 373

cross-validation (RFECV) for imaging feature selec- 374

tion. 375

SHAP is an additive feature attribution method 376

based on the Shapley values from the game theory 377

that assigns an “importance value” for each feature 378

for a particular prediction. The method calculates the 379

contribution of each feature individually, allowing 380

comparison between different models and analyzing 381

the feature influence against the feature value. Unlike 382

other explainable methods, SHAP perturbs all sub- 383

sets of features, dealing with the interaction between 384

features [16, 17]. 385

The RFECV is a dimensionality reduction algo- 386

rithm that recursively constructs the model, chooses 387

the least important variable, removes the feature with 388

the lowest importance until the desired number of fea- 389

tures or the set of features gives the best performance. 390

RFECV method uses the impurity index (Gini impu- 391

rity) for tree-based models to select features, handling 392

with nonlinear relation between features [18, 19]. 393

However, the impurity shows only the features’ fre- 394

quency and magnitude in the tree-based model and 395

not its importance. Thus, features with atypical values 396

have more chance to be considered the most impor- 397

tant feature, increasing bias in the selection. In our 398

work, we used the combination of SHAP and RFECV 399

to avoid bias in feature selection. 400

The feature selection uses 10-folds cross- 401

validation, eliminating 10% of image features with 402

the smallest SHAP values in each fold. We use the 403

set of features that achieves the highest area under 404

the curve (AUC) of the receiver operating character- 405

istic (ROC) curve in a training dataset with 80% of 406

the whole dataset after the 10-folds cross-validation. 407

Evaluation strategy 408

The algorithms presented in section “Classifica- 409

tion algorithms” are evaluated before and after feature 410

selection. They are tuned and evaluated with the best 411
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parameters. More details are presented in the follow-412

ing sub-sections:413

Hyperparameter tuning414

Each model was tuned using a randomized search415

with cross-validation from the sci - kit learn library to416

optimize the classification. The method uses a range417

of values of set parameters randomly to optimize the418

model seeking the parameters that give the highest419

sensitivity between all tested parameters combina-420

tions. We chose to run 100 iterations for each model,421

using leave-one-out cross-validation (LOOCV).422

Performance metrics423

The performance metrics used for the classifiers’424

comparison are the balanced accuracy, accuracy, and425

the number of selected features. We chose to mainly426

use balanced accuracy to compare our results due427

to its joint representation of sensitivity and speci-428

ficity than accuracy itself. Accuracy is only used to429

compare our results with the literature.430

The balanced accuracy of a model is calculated as
follows:

Balanced accuracy (Bacc)

= 1

2
(sensitivity + specificity)

= 1

2

(
TP

TP + FN
+ TN

TN + FP

)
,

where TP = true positive, TN = true negative,431

FP = false positive, and FN = false negative.432

Interpretation of selected features433

Interpretation of selected features by the SHAP-434

RFECV model is obtained with the SHAP interpreter435

trained in 80% of data, with hyperparameter tuning436

with randomized search strategy with 10-folds cross-437

validation seeking for the highest area under the curve438

of the receiving operating curve. To an unbiased inter-439

pretation of the selected features, the trained model440

is evaluated in the test dataset (20%).441

Classification experiments442

We investigate three binary problems to classify443

individuals in the cognitive decline spectrum: CNI444

versus CONV, CNI versus MCI, and CNI versus ACS.445

For each binary task, we tested features extracted446

from FDG PET, AMY PET, and MRI modalities447

separately, a multimodality approach using features448

extracted from all images, and features extracted a 449

combination of both FDG and AMY PET images. 450

All imaging features are concatenated in a vector for 451

the same individual. 452

We evaluate the performance of four classification 453

models (DTC, RF, LGBM, and CAT) before and after 454

the feature selection using SHAP-RFECV. Addition- 455

ally, we perform a randomized search with LOOCV 456

for hyperparameter tuning in the models before and 457

after feature selection. 458

RESULTS 459

Results reveal feature selection using SHAP- 460

RFECV method improved the balanced accuracy 461

of the classification models. However, exceptions 462

occurred mainly for DTC and LGBM algorithms. The 463

highest balanced accuracy difference between before 464

and after feature selection was 26%. 465

Figure 1 shows the number of features selected by 466

imaging modality for each pairwise comparison using 467

the combination of SHAP and RFECV. 468

Figures 2–4 show the balanced accuracy, confi- 469

dence interval values, and the p-value of the two 470

groups non-parametric Wilcoxon test for paired data 471

for the classification models before feature selection 472

(DTC-1, RF-1, LGBM-1, CAT-1) and after feature 473

selection (DTC-2, RF-2, LGBM-2, CAT-2) for each 474

binary classification task (CNI versus CONV, CNI 475

versus MCI, and CNI versus ACS). 476

Fig. 1. Number of selected features for each pairwise comparison
in single and multimodality imaging approaches for all classifica-
tion models.
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Fig. 2. Balanced accuracy with variance, and 95% confidence interval (CI) for each classification model before feature selection (Model-1)
and after feature selection (Model-2), for the binary classification task CNI versus CONV.

DISCUSSION477

This study investigates ensemble with tree-based478

algorithms to classify individuals in the cognitive479

decline spectrum by using features extracted from480

single imaging modalities (FDG PET, AMY PET, 481

and MRI) and combinations of imaging modalities 482

(FDG PET+AMY PET+MRI, and a PET ensem- 483

ble). We study the effect of feature selection in 484

the classification of healthy cognitive non-impaired 485
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Fig. 3. Balanced accuracy with variance, and 95% confidence interval (CI) for each classification model before feature selection (Model-1)
and after feature selection (Model-2), for the binary classification task CNI versus MCI.

individuals (CNI) in a pairwise comparison with con-486

verters (CONV), MCI, and ACS.487

Estimating the features’ importance for classifica-488

tion in neuroimaging is valuable because it allows489

assessing the features contributing to the classifier. It 490

can potentially identify, for example, regions or struc- 491

tures with a biologically plausible connection to the 492

pathology. The feature selection is particularly inter- 493
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Fig. 4. Balanced accuracy with variance, and 95% confidence interval (CI) for each classification model before feature selection (Model-1)
and after feature selection (Model-2), for the binary classification task CNI versus ACS.

esting in studying cognitive decline using imaging494

features to connect the disease evolution and radiomic495

features.496

Several methods and algorithms are already imple- 497

mented to select features in ML models based on 498

univariate group-level statistical tests, filtering, and 499
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wrapper methods, like SHAP-RFECV, used in our500

study. Each method has its particularities, advan-501

tages, and disadvantages. Feature reduction methods502

are excellent and usually provide higher accuracies503

because they use all the variance of feature infor-504

mation in a small feature space, like the principal505

component analysis. However, the information about506

the importance of each feature is lost in the pro-507

cess. Statistic-based features have the advantage of508

being independent of model performance. However,509

they are sensitive to the group mean, leading to the510

loss of discriminatory information due to exclusion511

[23]. Like Pearson’s correlation, filtering methods are512

independent of the algorithm performance, but most513

methods treat the features independently, ignoring514

their relationships [23]. Wrapper methods consider515

the feature selection as a search problem and elimi-516

nate features based on features weights assigned by517

the best performance on an external estimator. SHAP518

feature importance, used in our study, is a way to get519

each feature influence in the prediction, even more520

for a tree-based model, due to the lack of information521

when using only the impurity as a measurement for522

the feature importance.523

Our sample size in the groups varied from 16 to524

40 subjects, a small number compared to the num-525

ber of imaging features. In some cases, a ratio of a526

sample size to features was almost 1 : 1 (i.e., CNI ver-527

sus CONV, with 38 subjects for 36 image features in528

the PET ensemble approach). According to Vabalas529

et al. [24], if the ratio of features to sample size is530

high, the classification model tends to fit the noise531

of data instead of the underlying pattern and over-532

fitting. Our results showed an overall improvement533

in the classification models’ balanced accuracy with534

the feature selection. The SHAP-RFECV ensures to535

avoid bias in feature selection, and its use shows to536

reduce problems of fitting to noise [25].537

Our results show that the features extracted from538

the MRI approach produce the highest performance539

for all models in all binary classification tasks. Our540

MRI features are the mean volume of cortical GM541

brain regions normalized by the estimated intracra-542

nial volume based on Hammers’ atlas. Measures of543

cortical thickness and subcortical volumes are the544

most used biomarkers related to structural neurode-545

generation in AD and cognitive decline [8]. For the546

four different algorithms, one MRI imaging feature547

was consistently selected in all binary classification548

tasks: the parietal lobe (Supplementary Table 1). The549

parietal lobe comprises the precuneus and regions550

of the somatosensory and visuospatial cortex and is551

involved in higher cognitive functions [28]. Previous 552

works showed the volume of parietal structures is 553

predictive of conversion from MCI to AD [20, 21]. 554

In our sample, CNI individuals presents higher pari- 555

etal volumes than the other three groups (data not 556

shown) being possible to verify that this region could 557

be used as an early marker of neurodegeneration, con- 558

sidering that the CONV group is in the same age 559

group as the HC, and that MCI, and AD groups are 560

about 10 years younger. Following the literature, the 561

MRI feature selected together with the parietal lobe 562

in the binary tasks (CNI versus CONV and CNI ver- 563

sus MCI) was the frontal lobe, which plays a part 564

in monitoring and controlling processes that support 565

memory [29], language, and visuoconstructive abili- 566

ties [30]. Moreover, the frontal theory of cognitive 567

aging suggests that the frontal lobe is responsible 568

for the decline in memory, attention, and cognitive 569

flexibility that accompany healthy aging [31], sup- 570

porting our results. In our sample, frontal lobe of 571

COVN, MCI, and ACS groups overlap themselves, 572

while CNI individuals presents smaller volume com- 573

pared to them (data not shown). It is important to note 574

that CNI and CONV groups are about 10 years older 575

than MCI and ACS groups, and smaller volumes of 576

this region is expected even in non-impaired individ- 577

uals. We hypothesize that in the presence of all four 578

groups with the same average age, the frontal lobe 579

was going to show smaller volumes in the MCI and 580

ACS groups, related to cognitive decline in these sub- 581

jects. However, more data is necessary to conduct this 582

analysis. 583

Our study shows AMY PET usually outperforms 584

FDG PET in all binary classification tasks when 585

the features are extracted in a single PET modal- 586

ity approach. Trzepacz et al. [32] studied FDG PET, 587

AMY PET, and MRI image features to predict MCI 588

conversion to AD using the features individually and 589

combined. They found that AMY PET and MRI fea- 590

tures were more accurate in predicting a two-years 591

conversion from MCI to AD. However, Xu et al. and 592

Nozadi and Kadouri [7, 9] findings go on the contrary 593

way. In a single modality analysis of FDG and 18F- 594

AV45 (A� tracer) PET, FDG PET features slightly 595

improved discriminating MCI from AD and CNI. 596

Combining both PET traces in an ensemble has 597

maintained the mean overall accuracy in the classifi- 598

cation tasks compared to single PET modalities. The 599

combination of FDG and AMY PET in classifica- 600

tion experiments is unusual because both modalities 601

are not acquired together in clinical practice [32]. 602

However, FDG and AMY PET provide valuable 603
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and complementary information [35], as shown in604

our results. Usually, the classification studies asso-605

ciate FDG PET and MRI imaging features with CSF606

biomarkers, including the A�42:A�40 ratio, total tau,607

phosphorylated tau, and even genetic markers [8–11,608

36]. However, CSF sampling is an invasive procedure,609

requiring lumbar puncture and does not present loca-610

tion and extension of the pathology, which is valuable611

information in the earliest stages of A� accumulation612

[35]. Therefore, Chételat et al. [35] defend AMY PET613

as a first-line diagnostic procedure, avoiding several614

visits and unnecessary invasive interventions.615

The classification model’s performance was close616

to the MRI approach in the multimodality imaging617

analysis because feature selection was resumed to the618

MRI features. MRI volume of the parietal and frontal619

lobe was selected in all models in the multimodality620

approach. Furthermore, for the CNI versus CONV621

and CNI versus ACS, only parietal image features622

were selected alone for the MRI single modality fea-623

tures, showing the importance of these brain regions624

in the cognitive decline (Supplementary Table 1).625

In our work, SHAP-RFECV was used as a feature626

selector for each model with all imaging features,627

seeking not to exclude image features that generate628

the highest AUC. However, MRI features had the629

highest balanced accuracy and AUC for all models,630

like a single modality. Therefore, it was expected that631

it has more weight in the selection when combined632

with PET features. Xu et al. [9] used the weighted633

multimodality sparse representation-based classifi-634

cation to integrate FDG PET, AMY PET, and MRI635

features. They found that the imaging modalities con-636

tributed differently depending on the classification637

problem for different pairwise comparisons.638

Tables 2 and 3 compare our best classification mod-639

els’ (RF and CAT) results with similar publications,640

using single imaging modalities and a multimodal-641

ity approach. Accuracy is used for direct comparison642

(Supplementary Table 2). We did not find studies clas-643

sifying between CNI and converters in the early stage644

of MCI or using a PET ensemble of FDG and AMY645

images to classify CNI versus CONV, MCI, or ACS646

individuals.647

Our results using AMY PET, MR single modal-648

ities show similar performance in the classification649

when compared to the literature. We did not find650

studies using ML models to classify between CNI651

and converters using PET and MRI. Although direct652

comparison is not entirely appropriate due to dif-653

ferent datasets (even different subjects in the same654

dataset) and different algorithms (SVM, RF, CAT,655

SRC, ELM), our results show good agreement with 656

the performance reported in the literature. 657

Our FDG PET approach resulted in lower accura- 658

cies, even for CNI versus ACS binary classification 659

task. Several aspects can explain the limited perfor- 660

mance. Our FDG PET data was averaged between 661

45 to 60 min post-injection, which is less usual 662

because usually PET images are averaged from 30 663

to 60 min post-injection. Furthermore, PET images 664

were acquired from several PET scanners, which can 665

lead to variations in the image quantification, affect- 666

ing the imaging features calculated as the mean value 667

of the normalized voxel intensity in the brain regions. 668

No direct corrections for these differences were per- 669

formed. 670

Moreover, we hypothesize that the use of large 671

volumes in brain parcellation may have obscured 672

metabolic FDG PET differences in smaller brain 673

regions. In our study, the parcellated brain volume 674

was an adaptation of Hammers atlas with 18 brain 675

regions, a low number compared to other studies. 676

Our option was supported by Samper-González et al. 677

[37]. They analyzed the influence of different atlases 678

consisting of 56 to 345 regions for brain parcella- 679

tion on the classification using MRI and FDG PET. 680

None provided differences in classification perfor- 681

mance for CNI versus AD, CNI versus progressive 682

MCI, and stable MCI versus progressive MCI. In our 683

work, the low performance in the classification using 684

FDG PET features can be attributed to the unspe- 685

cific FDG uptake in brain regions. The average uptake 686

over a brain region can obscure differences in hyper- 687

or hypometabolism detection. Likely, a brain par- 688

cellation could highlight minor differences in FDG 689

uptake between groups, especially in early decline. 690

We believe brain parcellation will not significantly 691

affect the classification performance using AMY PET 692

and MRI because both markers are more specifically 693

related to brain regions affected by the disease. 694

Some limitations are present in this study. Our 695

datasets are smaller compared with the literature 696

and get smaller in multimodality approaches because 697

we included only individuals with all three imaging 698

modalities. Moreover, our image features are normal- 699

ized mean values of brain regions, determined by a 700

modified Hammers’ atlas in both the right and left 701

hemispheres, potentially obscuring laterality differ- 702

ences and differences in smaller regions such as the 703

cingulate cortex. 704

Another limitation of this study was the used sam- 705

ple size. In total, we had 131 individuals, distributed 706

into four diagnosis groups. The inclusion and exclu- 707
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Table 2
Comparison between the literature and our work results in single imaging modality approach (FDG PET, AMY PET, and MRI)

Single Imaging Modality
Accuracy (%)

Method Imaging Algorithm n of each study CNI versus CNI versus CNI versus
Modality CONV MCI ACS

Nozadi and Kadouri [7] FDG PET SVM 208 CNI, 164 Early MCI, 189 Late MCI, 99 ACS – 63.3 / 63.5 1 91.7
Nozadi and Kadouri [7] RF – 56.7 / 65.4 1 91.2
Garali et al. [13] RF 61 CNI, 29 MCI, 91 ACS – 76.6 91.5
Xu et al. [9] SRC 117 CNI, 110 MCI, 113 ACS – 71.8 90.9
Gray et al. [12] RF 35 CNI, 41 stable MCI, 34 progressive MCI, 37 ACS – 60.2 86.5
Gray et al. [34] SVM 54 CNI, 64 stable MCI, 53 progressive MCI, 50 ACS – 70.7 2 80.9
Lin et al. [32] ELM 200 CNI, 205 stable MCI, 110 progressive MCI, 102 ACS – – 76.7
Zhang et al. [11] SVM 52 CNI, 99 MCI, 51 ACS – 71.4 86.5
Pan et al. [2] SVM 90 CNI, 88 MCI, 94 ACS – 83.2 91.9
Our study RF 36 CNI, 24 CONV, 40 MCI, 31 ACS 66.9 59.1 80.3
Our study CAT 74.0 65.3 82.8

Nozadi and Kadouri [7] AMY PET SVM 208 CN, 164 EMCI, 189 LMCI, 99 ACS – 57.7 / 61.2 1 90.8
Nozadi and Kadouri [7] RF – 59.7 / 55.7 1 87.9
Xu et al. [9] SRC 117 CNI, 110 MCI, 113 ACS – 70.5 83.7
Our study RF 22 CNI, 16 CONV, 40 MCI, 29 ACS 77.7 66.5 84.2
Our study CAT 80.1 60.8 89.6

Xu et al. [9] MRI SRC 117 CNI, 110 MCI, 113 ACS – 68.7 89.6
Gray et al. [12] RF 35 CNI, 41 stable MCI, 34 progressive MCI, 37 ACS – 69.1 82.1
Lin et al. [32] ELM 200 CNI, 205 stable MCI, 110 progressive MCI, 102 ACS – – 74.5
Zhang et al. [11] SVM 52 CNI, 99 MCI, 51 ACS – 72 86.2
Toshkhujaev et al. [8] SVM 28 CNI, 32 ACS – – 91.7 3

Our study RF 36 CNI, 24 CONV, 40 MCI, 31 ACS 89.1 100 97.2
Our study CAT 89.1 98.2 97.2
1Classification between CNI and early MCI/late MCI; 2Classification between CNI and prodromal MCI. 3Considering only ADNI dataset results. CAT, categorical boosting; ELM, extreme
learning machine; RF, random forest; SRC, sparse representation-based classification; SVM, support vector machine.
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Table 3
Comparison between the literature and our work results in multimodality approach

Imaging multimodality
Accuracy (%)

Method Model n of each study Algorithm CNI versus CNI versus CNI versus
CONV MCI ACS

Liu et al. [14] FDG+MRI 52 CNI, 99 MCI, 51 ACS SVM – 78.8 94.4
Xu et al. [9] FDG+AMY+MRI 117 CNI, 110 MCI, 113 ACS wmSRC – 74.5 94.8
Lei et al. [10] PET+MRI+CSF 186 CNI, 393 MCI, 226 ACS SVM – 80.3 94.7
Zhang et al. [11] FDG+MRI+CSF 52 CNI, 99 MCI, 51 ACS SVM – 76.4 93.2
Gray et al. [12] FDG+MRI+CSF+Genetic 35 CNI, 41 stable MCI, 34 RF 1 – 72.7 89

progressive MCI, 37 ACS
Gray et al. [12] FDG+MRI+CSF+Genetic RF 2 – 65.3 87.1
Lin et al. [32] FDG+MRI+CSF+Genetic 200 CNI, 205 stable MCI, 110 ELM – – 84.7

progressive MCI, 102 ACS
Tong et al. [15] FDG+MRI+CSF+Genetic 35 CNI, 75 MCI, 37 ACS RF 2 – 73.1 86.2
Tong et al. [15] FDG+MRI+CSF+Genetic RF 3 – 79.5 91.8
Our study FDG+AMY+MRI 22 CNI, 16 CONV, 40 MCI, 29 ACS RF 90.3 96.7 88.9
Our study FDG+AMY+MRI CAT 100 96.7 94.4
1Combined embedding features; 2 Concatenated features; 3Non-linear fusion graphs. CAT, categorical boosting; CSF, cerebrospinal fluid;
ELM, extreme learning machine; RF, random forest; SVM, support vector machine; wmSRC, weighted multimodality sparse representation-
based classification.

sion criteria for the CONV group, aggregated with708

the possibility to have at least one PET and one MRI709

image in the determined interval between 6 months710

before and 12 months after clinical progression from711

CNI to MCI, has reduced our sample significantly.712

Further data are required to overcome these limita-713

tions and generalize our results.714

It is important to state that FDG and AMY PET715

are rarely used in clinical practice for a joint analy-716

sis. Even AMY PET being more used in the suspect of717

dementia, mainly in the clinical signs of Alzheimer’s718

pathology, and for differentiation between neurolog-719

ical disorders, FDG PET is still the most available720

radiotracer and is used in the absence of AMY PET.721

In this works, the authors wanted to show the contri-722

bution and potentialities of the use of both modalities723

together. Another point to be considered was the use724

of only biomarkers based on image data in this work.725

Future work will include clinical variables, e.g., age,726

sex, presence of APOE �4, and CSF tau, in the model727

to improve the classification results.728

CONCLUSION729

Our work investigates ensemble tree-based clas-730

sification models in early cognitive decline studies731

using features extracted from single and multimodal-732

ity imaging approaches. In addition, our analysis733

includes the use of SHAP-RFECV as an unbiased734

feature selection, and early stages of aging cogni-735

tive decline, looking for subtle imaging differences736

indicating neurodegeneration.737

The feature selection implemented with the Shap- 738

ley additive explanations combined with the recursive 739

feature elimination with cross-validation showed 740

improvement in the classification models’ accuracy. 741

Among the studied models, the categorical boost- 742

ing model and the random forest produced the best 743

overall performance for classifying cognitively non- 744

impaired individuals from early stages of cognitive 745

decline, mild cognitive decline, and Alzheimer’s clin- 746

ical syndrome. Further work is required to analyze the 747

impact on feature selection on the right and left-brain 748

sides using an atlas with a higher number of regions to 749

brain parcellation. Ongoing work includes a detailed 750

evaluation of the selected brain regions and corre- 751

lation with the cognitive decline spectrum in stable 752

individuals and those that progress in the cognitive 753

impairment. 754
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